The background image used in this website shows an optical measurement arrangement to measure the cavitation vapour volume fraction and the spray jet droplet size distribution from the internal flow and spray jets obtained in a 6-hole Diesel injector operating at various accumulator pressures and temperatures, into atmospheric pressure. A Nd:YLF laser is operating with a pulse frequency of 7.5kHz at 527nm wavelength, with a pulse energy of approximately 1mJ/pulse. The laser light is split into 2 laser beams using a 50:50 45deg AOI laser beam splitter. One of the pulsed laser beams is directed across one of the 6 spray jets in order to excite fluorescence in a Rhodamine-B doped Diesel fuel sample. The nearest HS video camera in the background image is set to collect elastic Lorentz-Mie scattered light and long wavelength fluorescence light (560nm – 580nm collection) obtained from one of the six spray jets emanating from the 6-hole Diesel injector. The HS video camera is synchronised with the Nd:YLF laser operating at 7.5kHz. Accurate combination of the fluorescence images with the 527nm images permits the determination of spray droplet size distribution in the spray jet that is being subjected to investigation. The investigation into the properties of the Diesel spray is able to provide quantitative data on Diesel sprays that are formed based on varying composition (conventional Diesel, CTL/GTL Diesel, Diesel with FAME additives etc), anti-corrosion additives, additives for modifying viscosity and/or surface tension etc., fuel temperature and accumulator pressure.

The second laser beam is directed into an optically accessible Diesel nozzle. The fluorescence images that are obtained from Rhodamine-B doped Diesel fuel inside the injector are imaged on the second HS video camera with the long aluminium tube in the background images. The fluorescence images resolve the line-integrated spatial distribution of Diesel fuel inside the injector minisac and nozzle holes with a synchronised frequency of 7.5kHz, thereby providing both time-resolved and 2-dimensional spatially-resolved data on line-integrated fuel concentration inside the Diesel injectors during operation. Once again, this investigation is able to provide quantitative data on the internal flow characteristics of various Diesel fuels with varying composition, anti-corrosion additives, additives for modifying viscosity and/or surface tension etc., fuel temperature and accumulator pressure.

It is known from other research that liquids passing through high pressure nozzles are able to produce large internal pressure gradients that result in local fluid pressure regions that fall below the saturated vapour pressure for the liquid. This causes local supersaturation, which is able to form local vapour bubbles, clouds or sheets when accompanied by nucleation particles or surface irregularities. This type of multi-phase fluid flow is called a cavitating flow. Once the flow pressure recovers, the vapour bubbles, cloud or sheet collapse. Large temperatures, pressures and shock waves occur in the neighbourhood of the collapsing vapour during the collapse, which are able to erode adjacent containment surfaces. This process is known as cavitation erosion, which can result in critical damage to a relevant component.

Cavitating flows obtained in Diesel injectors during fuel injection have a strong effect on the structure and stability of the spray jets that are formed inside the engine cylinder outside of the nozzle holes. They are also capable of choking the amount of fuel delivered to the engine cylinders during injection. Variation of injector geometry and non-Newtonian viscosity modifiers are employed to control nozzle cavitation and the flow and atomization properties of the emergent spray jets.

22 Thoughts to “The Background to our Background Image – Internal Diesel Flows & Sprays”

  1. Excellent article. I definitely appreciate this site. Keep writing!

  2. Good post. I learn something totally new and challenging on sites I stumbleupon everyday. It will always be helpful to read content from other writers and practice a little something from other websites.

  3. Itís hard to come by knowledgeable people for this subject, but you sound like you know what youíre talking about! Thanks

  4. Im excited to find this website. I need to to thank you for your time due to this wonderful read!! I definitely loved every little bit of it and i also have you book marked to check out new stuff in your blog.

  5. Im very happy to find this web site. I need to to thank you for ones time for this particularly wonderful read!! I definitely liked every bit of it and I have you saved to fav to check out new stuff on your website.

  6. Good post. I learn something totally new and challenging on blogs I stumbleupon on a daily basis. Its always useful to read content from other authors and practice something from their websites.

  7. I need to to thank you for this good read!! I certainly enjoyed every little bit of it. I have got you book-marked to check out new things you postÖ

  8. Itís hard to find knowledgeable people for this subject, but you seem like you know what youíre talking about! Thanks

  9. Nice post. I learn something new and challenging on blogs I stumbleupon every day. It will always be helpful to read articles from other authors and use something from their sites.

  10. Hello there! This blog post couldn’t be written much better!
    Going through this post reminds me of my previous roommate!
    He always kept talking about this. I am going to send this post to him.
    Fairly certain he will have a very good read. Thanks for sharing!

  11. Very quickly this website will be famous among all blogging
    people, due to it’s good content

  12. Wow, incredible blog structure! How long have you ever been running a
    blog for? you make running a blog look easy. The whole glance of your web
    site is excellent, let alone the content!

  13. I visited various websites except the audio feature for audio songs present at
    this web page is in fact wonderful.

  14. I am really impressed with your writing skills and also with the layout on your blog.
    Is this a paid theme or did you customize it yourself?

    Anyway keep up the nice quality writing, it is rare to see a great blog like this one these
    days.

  15. Wow, this post is good, my sister is analyzing these kinds of things, therefore I am going
    to convey her.

  16. Your style is unique compared to other folks I’ve read stuff from.
    Many thanks for posting when you have the opportunity, Guess I’ll just bookmark this site.

  17. The next time I read a blog, I hope that it doesnt disappoint me just as much as this particular one. After all, Yes, it was my choice to read, nonetheless I genuinely believed you would have something useful to say. All I hear is a bunch of whining about something that you can fix if you were not too busy seeking attention.

  18. It’s very straightforward to find out any
    matter on net as compared to books, as I found
    this piece of writing at this site.

  19. Ahaa, its pleasant conversation about this paragraph at this place at this
    website, I have read all that, so now me also commenting at this place.

  20. Its like you read my mind! You appear to know so much about this, like you wrote
    the book in it or something. I think that you could do with a few pics to
    drive the message home a bit, but instead of that,
    this is excellent blog. An excellent read. I will definitely be back.

Leave a Comment